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Owing to its size independence in the so-called near-continuum vanishingly small Knudsen number regime
sKn!1d, thermophoretic particle motion occurring in an otherwise quiescent gas under the influence of a
temperature gradient is here interpreted as representing the motion of a tracer, namely, an effectively point-size
test particle monitoring the local velocity of the undisturbed, particle-free, compressible gas continuum through
space. “Compressibility” refers here not to the usual effect of pressure on the gas’s mass densityr but rather
to the effect thereon of temperature. Our unorthodox continuum interpretation of thermophoresis differs from
the usual one, which regards the existence of thermophoretic forces in gases as a strictlynoncontinuum
phenomenon, involving thermal stress-induced Maxwell slip(“thermal creep”) of the gas’s mass velocityvm at
the surface of the particle, withvm denoting the velocity appearing in the continuity equation expressing the
law of conservation of mass. Explicitly, instead of regarding the thermally animated particle as movingthrough
the gas, we regard the particle(in its hypothesized role as a tracer of the undisturbed, particle-free, fluid
motion) as movingwith the gas, through space; that is, the particle is viewed as simply being entrained in the
flowing gas, which, as a result of an externally applied temperature gradient, was already in motion prior to the
tracer’s introduction into the fluid—albeit not mass motion(which is, in fact, identically zero) but rather
volume motion. This tracer-particle interpretation of experimental thermophoretic particle velocity measure-
ments raises fundamental issues in regard to the universally accepted Newtonian rheological law constitutively
specifying the viscous or deviatoric stressT as being proportional to the(symmetrized, traceless) fluid velocity
gradient =v, with v identified as being the fluid’s mass velocityvm. Rather, it is argued in the case of
compressible fluids, including liquids, thatv should, instead, be chosen as the fluid’s volume flux density or
current densitynv, the latter being formally equivalent to the fluid’s volume velocityvv, which differs fromvm

except in the case of incompressible fluids. Apart from this strictly constitutive issue in regard toT, it is further
argued that the fluid’s tracer or Lagrangian velocityvlª s]x /]tdx0

along the fluid’s spatiotemporal trajectory
x=xsx0,td is equal tovv, rather than tovm. This too is contrary to the heretofore unquestioned supposition that
the conceptually distinct fluid velocitiesvl andvm are not only equal but are, in fact, synonymous. To the extent
thatvl Þvm in the nonisothermal fluid case, an optical dye- or photochromic-type experiment(each of the latter
two experiments presumably serving to measurevm) will record a different velocity than would a comparable
tracer particle velocity measurement, one that measuresvl.
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I. INTRODUCTION

This paper offers,inter alia, an unconventional, purely
continuum interpretation of existing thermophoretic particle
velocity data[1] for gases in the so-called near-continuum
small Knudsen number regime[2]. Moreover, during the
course of the analysis, basic hydrodynamic relations are de-
veloped for more general situations in which temperature
gradients exist within a fluid, the latter including liquids. The
applicability of these formulas and notions transcends the
particular thermophoresis focus of the present paper.

Epstein’s [3] widely accepted explanation of thermo-
phoresis in this regime invokes Maxwell’s[4] ubiquitous
thermal creep boundary condition, involving temperature-
gradient-induced slip of the mass velocityvm along the par-
ticle surface, in conjunction with use of the classical Navier-
Stokes (creeping flow) equation governingvm for the
incompressible fluid case,= ·vm=0. In contrast, our alterna-
tive, strictly continuum, explanation of the phenomenon of
thermophoresis retains the classical no-slip condition, albeit

imposed upon the volume velocityvv [5,6] rather than upon
vm, while concurrently introducing a correspondingvv-based
modification of Newton’s originalvm-based rheological law
entering into the formulation of the Navier-Stokes(NS)
equation[7]. Moreover, our analysis of thermophoretic mo-
tion is believed to be applicable not only to gases but also to
liquids, although the limited amount and quality of the
liquid-phase data currently available in support of this thesis
are considerably less authoritative than in the gaseous case.

We propose a fundamental modification of Newton’s vis-
cosity law, wherein the velocityv appearing in the constitu-
tive expression

T = 2m=v + kI = ·v s1d

for the deviatoric stressT is here assumed to be given by the
fluid’s volume velocity[5],

v = vv, s2d

rather than by its usual mass velocity,*Email address: hbrenner@mit.edu
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v = vm. s3d

The symbolvm refers to the velocity appearing in the conti-
nuity equation]r /]t+ = ·srvmd=0, or, which is equivalent,

− Dm ln r/Dt = = ·vm, s4d

with Dm/Dtª] /]t+vm·= the so-called material derivative.
In Eq. (1) m is the shear viscosity,k the bulk viscosity, andI
the unit dyadic. The overbar appearing in the expression for
T in Eq. (1) denotes the symmetric and traceless portion of

the dyadic which it surmounts; that is,D̄ª

1
2sD+DTd

− 1
3I sI :Dd for any dyadicD.
Why should one question the validity of Newton’s

vm-based viscosity lawT =2m¹vm+kI ¹ ·vm? Objective ex-
perimental evidence existing in the literature in support of
this constitutive relation is based primarily upon theincom-
pressible, isothermal fluid case, wherer is uniform through-
out the fluid(while also supposing the usualvm-based no-slip
boundary condition to be applicable at solid surfaces). In
contrast, the present paper addresses key evidence regarding
these issues for the case of “compressible” fluids, wherer is
no longer constant throughout the gas owing to temperature
variations therein. Explicitly, in what follows we critically
examine single component(essentially isobaric) gas flow
data associated with thermophoretic particle motion in
nonisothermal gases subjected to externally imposed homo-
geneous temperature gradients, where the gas densityr
=rsTd, rather than being uniform throughout the fluid, varies
locally with temperatureT. At the same time as we question
Newton’s viscosity law, we also inquire as to why an excep-
tion should be made, as has been done by Epstein[3] in his
explanation of thermophoresis, to the usualvm-based no-slip
boundary condition in circumstances where the conventional
incompressiblecontinuum NS equations are nevertheless
used to describe the fluid motion.

The usual assumption of a no-slip tangential velocity
boundary condition at a solid surface requires that

I s ·v = 0 on solid surfaces, s5d

where the dyadicI sª I −nn is the surface projection opera-
tor, in which n is the unit outer normal vector on the solid
surface. For the time being we leave upon the question of
whether the velocityv appearing in Eqs.(1) and(5) is given
by vm or vv, with the correct physical choice eventually to be
decided on the basis of comparing the respective theoretical
calculations based thereon of the particle’s thermophoretic
velocity U with experimental data for each of the two cases.
Complete specification of the vector velocity boundary con-
dition at a solid surface necessitates further imposing the
usual mass velocity requirement that the solid be impen-
etrable to mass flow:

n ·vm = 0 on solid surfaces, s6d

wherein no doubt exists as to which velocity is to be used in
the latter expression.

A. “Incompressible” creeping flow

As is demonstrateda posteriori, consistent with Epstein’s
[3] small Reynolds number analysis of thermophoresis, fluid
motion engendered by thermophoretic particle movement at
small Knudsen numbers is henceforth assumed to be gov-
erned to a satisfactory degree of approximation by the qua-
sistatic creeping flow and “incompressible” continuity equa-
tions

0 = − = p + = ·T s7d

and

= ·v = 0, s8d

again with the choice, Eq.(2) or Eq. (3), of the velocityv
remaining open[8]. Introduction of Eq.(1) into Eq. (7) fol-
lowed by use of Eq.(8) yields

=p = m=2v, s9d

in which we have regardedm as being essentially constant
throughout the fluid.

B. Energy equation

In the present single-component gaseous or liquid-phase
heat transfer case being anayzed, we suppose that the fluid’s
equation of state is such thatv̂= v̂sTd, with v̂=1/r the spe-
cific volume of the fluid. By thereby ignoring pressure ef-
fects upon fluid density it is thus implicitly assumed in the
thermophoretic problem subsequently addressed either that
the heat transfer process occurs essentially isobarically, or
else that pressure gradient effects upon the density gradient
=r are small compared with comparable temperature gradi-
ent effects.[We do not, however, ignore pressure gradient
effects in the creeping flow equation(9).] It is further as-
sumed that the “thermal law of adiabatically additive vol-
umes”[5,9] applies to the fluid in question, corresponding to
the approximation thatdv̂ /dT=const=C, say, independently
of T (and, of course,p) or, equivalently, ofr, at least over
small ranges of temperature. The fluid’s specific heat capac-
ity ĉp is also assumed to be a temperature-independent con-
stant.

An internal energy balance leads to the usual transport
equation[10] governing the temperature field,

rĉpDmT/Dt = = · sk = Td, s10d

in which viscous dissipation(and pressure) effects have been
neglected(cf. [10, p. 589]), assumptions which will be jus-
tified a posteriori in the case of thermophoretic phenomena.
Here, k is the fluid’s thermal conductivity, which will ulti-
mately be taken to be a constant, independent ofT. Use of
our assumed additive-volume law, namely,dv̂=C dT, leads
to the elementary identityDmT/Dt=C−1Dmv̂ /Dt. The latter,
in conjunction with the fact thatv̂=1/r, enables Eq.(10) to
be rewritten as −ĉpC

−1Dm ln r /Dt= = ·sk=Td. Comparison
of the preceding expression with Eq.(4) thus yields the fol-
lowing “quasi-incompressibility” relation[5,9]:

= ·vv = 0, s11d

in which the symbolvv is here defined as[11]
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vv ª vm − skC/ĉpd = T. s12d

The latter pair of equations effectively accord with those of
Pukhnachov[12].

That the right-hand side(RHS) of Eq. (12) does indeed
constitutively qualify in present circumstances as being the
fluid’s volume velocity is shown elsewhere[5]. However, for
present purposes the explicit physical interpretation to be
assigned to the symbolvv, here defined by Eq.(12) and
satisfying (11), is functionally irrelevant in terms of what
follows [13,14]. The only relevant issue in relation to use of
this symbol in the subsequent analysis pertains to the fact
that we propose to demonstrate the physical correctness of
the choice of Eq.(2) over Eq.(3) by utilizing available ex-
perimental thermophoresis data, with the unadorned symbol
v being that appearing in Eqs.(1) and (5). This scheme en-
tails solving the coupled continuity, momentum, and energy
equations for the quartet of fieldssvm,p,r ,Td, using the hy-
pothesis forv embodied in the unions2d % s12d.

II. THERMOPHORETIC PARTICLE MOTION

The above trio of coupled mass, momentum, and energy
transport equations is readily solved[15] so as to eventually
obtain the thermophoretic velocityU through space of a
force- and torque-free(non-Brownian) spherical particle in
an effectively unbounded fluid under the influence of a
steady, externally imposed, temperature gradient,=T0, say.
Explicitly, consider a sphere of radiusa immersed in a vis-
cous fluid(gas or liquid) confined between a pair of parallel,
impermeable, heat-conducting, hot and cold walls perma-
nently maintained at the respective temperaturesTh and Tc.
The hot and cold walls, respectively, situated atx=0 andx
=L, extend to infinity in they and z directions, so that the
externally imposed temperature gradient is=T0ª−x̂sTh

−Tcd /L, with x̂ a unit vector in the positivex direction.(The
minus sign appearing in the latter expression reflects the
definition of the gradient operator=, wherein the gradient
points in the direction in which the scalar field upon which it
operates increases.) Gravity is supposed absent or negligible
in what follows. In circumstances where the sphere is situ-
ated far from either wall and satisfies the inequalitya/L
!1, we seek to calculate the force(and torque), if any, re-
quired to maintain the sphere fixed in place relative to the
walls. Such knowledge ultimately permits calculation of the
sphere’s thermophoretic velocityU.

A. Boundary conditions

For simplicity, attention is subsequently confined to the
case where the sphere is effectively non-heat-conducting
compared with the fluid’s thermal conductivity. As such, the
thermal boundary condition on the sphere surface, say]Vs,
necessitates that

n · = T = 0 on]Vs. s13d

Additionally, it is required thatT=sTh,Tcd at x=s0,Ld for
∀ sy,zd.

The impenetrability of the sphere and walls to mass re-
quires that Eq.(6) be satisfied on these surfaces. Further-
more, the no-slip tangential velocity boundary condition on
the sphere and wall surfaces necessitates that Eq.(5) be sat-
isfied thereon. The presence in our modified NS theory of
two velocities, namely,vm andvv, rather than a single fluid
velocity as in traditional NS problems, raises the question of
which of these two velocities is to be selected to satisfy this
no-slip condition.

B. Thermophoretic velocity

To calculate the velocityU of the sphere for each of the
two choices ofv, namely, Eqs.(3) and(2), we first solve the
above system of steady-state equations and boundary condi-
tions for the fieldssvm,vv ,r ,T,pd for the stationary sphere
caseU=0. Knowledge of the fieldssv ,pd, with v=vm or vv,
enables the Cauchy stress tensorP=−I p+T to be calculated
for each of these two cases and ultimately, therefrom, the
respective forcesF=r]Vs

dSn ·P [and torquesL o=r]Vs
sx

−xod3dSn ·P, about the sphere center “o” ], if any, exerted
by the fluid on the sphere. In turn, this knowledge ofF and
L o for the stationary sphere case permits calculation of the
quasi-steady velocityU with which a force- and torque-free
sphere will move through space(i.e., relative to the space-
fixed walls). This calculation is performed below for each of
the two choices ofv.

1. The casev=vm

This choice leads straightforwardly to the trivial conclu-
sion thatvm=0 s∀ xd and, furthermore, thatp=const=p0,
say (whence P=−I p0=const). As such, the basic trio of
transport equations degenerates to the problem of steady-
state heat conduction throughout the static fluid domain ex-
ternal to the sphere. From Eq.(10) the temperature field for
this case satisfies Laplace’s equation¹2T=0 (with k assumed
constant throughout the fluid). It is obviously unnecessary to
solve explicitly for either the temperature fieldTsxd [with
x=sx,y,zd] or for the concomitant density fieldrsxd in order
to arrive at the conclusion that no force or torque acts on the
sphere, and hence thatU=0 for this case. Accordingly, the
conventional sv=vmd-based incompressible continuity and
creeping flow equations, Eqs.(8) and(9), satisfying the usual
no-slip mass velocity boundary conditionI s·vm=0 on the
sphere surface]Vs fails to predict the existence of thermo-
phoretic particle movement—a result which clearly holds ir-
respective of the shape of the particle(or even of its thermal
conductivity, sayks, were one to consider the conducting
particle case). It was this failure of the traditional
sv=vmd-based equation set to predict the experimentally ob-
served thermophoretic movement of particles suspended in
gases that led Epstein[3], later followed by others(see the
detailed review in Ref.[15]) [16–18], to seek a noncon-
tinuum Maxwell vm-slip-based explanation of thermophore-
sis.

We note here for later reference that whereasvm=0
throughout the fluid in present circumstances, there does,
nevertheless, exist a nonzero volume velocity fieldvvsxd
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Þ0 for this v=vm case. This volume velocity may be derived
from Eq. (12) in conjunction with the detailed temperature
field Tsxd. Obviously, far from the sphere,vv is given by the
expression

vv
s0d = − skC/ĉpd = T0 = const suxu/a → `d. s14d

This far-field solution also represents thevm-based volume
velocity field existing throughout the undisturbed, sphere-
free fluid confined between the hot and cold walls.

2. The casev=vv

With this alternative choice ofv, the transport equations
and boundary conditions governingv, outlined earlier, will
be seen to lead to nontrivial physical results, whereinUÞ0.
Among other things, in contrast with the findings for the
precedingv=vm case, the no-slip conditionI s·vv=0 on ]Vs
imposed upon the volume velocityvv in the present case
leads to a situation where, as a consequence of Eq.(12),
there is now a slipI s·vm=skC/ ĉpd=sT of the fluid’s mass
velocity vm along the sphere surface]Vs. As such, a no-slip
condition imposed uponvv translates into a slip condition
imposed uponvm. (Here, =s; I s·= is the surface gradient
operator.) In turn, this surface mass motion induces a bulk
mass flowvmÞ0 throughout the entire fluid[although far
from the sphere this mass motion will be sensibly zero,
whence the distant volume velocity field for the presentv
=vv case continues to be given by Eq.(14), in both the
presence and absence of the sphere].

The mathematical details underlying the calculation ofU
in the present circumstances are set forth in the Appendix,
where it is shown that the sphere’s thermophoretic velocity
can be calculated trivially via the judicious use of Faxen’s
laws [19], without the need to literally solve the requisite
coupled-equation boundary-value problem. This calculation
leads easily to the following expression for the thermo-
phoretic velocity of the nonconducting sphere:

U = − ab = T0, s15d

in which a=k/rĉp and b=s] ln v̂ /]Tdp;−r−1s]r /]Tdp are,
respectively, the fluid’s thermometric diffusivity and thermal
expansivity. We note that the productab;kC/ ĉp appearing
in Eq. (15) is a temperature-independent constant, since each

of the three thermal transport and equilibrium properties ap-
pearing on the right-hand side of this product have, individu-
ally, been supposed constant. According to its derivation, Eq.
(15) is equally applicable to both gases and liquids. Since
b.0 for virtually all fluids over the entire range of tempera-
tures encountered in practice, the particle will generally
move in a direction opposite to that of the temperature gra-
dient, namely, in the positivex direction, from hot to cold.
Among other things, it is interesting to note that the velocity
U given by Eq.(15) is independent of the sphere’s size. As
such, all other things being equal, and to the extent that our
theory proves to be correct, a boulder-sized body will move
at exactly the same velocity as would an effectively point-
sized(albeit non-Brownian) body.

III. COMPARISON OF EQ. (15)
WITH EXPERIMENTAL DATA

A. Gases

By definition, a=Pr−1y where Pr=ĉpm /k is the fluid’s
Prandtl number[10] and y=m /r is its kinematic viscosity.
Inasmuch asb=1/T for ideal gases, one can write Eq.(15)
for such gases in the form

U = − Cs8y = ln T, s16d

where the numerical constantCs8=1/Pr is anOs1d dimen-
sionless phenomenological coefficient, dependent only upon
the physicochemical properties of the gas. The temperatureT
appearing in Eq.(16) is to be interpreted as that existing in
the particle-free fluid in the neighborhood of the region cur-
rently occupied by the(center of) the sphere.

According to Eucken’s approximation[10] of the Prandtl
number (generally valid for nonpolar gases), one has that
Pr=4/s9−5g−1d, in which g= ĉp/ ĉv is the gas’s specific heat
ratio. As g values for monatomic and diatomic ideal gases
are, respectively,g<5/3 and 7/5, it follows, at least ap-
proximately, thatCs8=1.5 for monatomic gases and 1.36 for
diatomic gases. More accurately, actual experimental Prandtl
number data[10, p. 277] furnish the results shown in Table I
for various monatomic, diatomic, and polyatomic gases.

Experimentally[16–18], in the case of gases, the thermo-
phoretic velocityU of nonconducting non-Brownian spheri-

TABLE I. Cs8 values for various monatomic, diatomic, and polyatomic gases at 0 °C and 1 atm
pressure.

Monatomic and diatomic gases

Gas Ne Ar H2 N2 O2 Air CO NO Cl2
Cs8 1.50 1.50 1.43 1.37 1.35 1.37 1.32 1.30 1.32

Polyatomic gases

Gas H2O CO2 SO2 NH3 C2H4 C2H6 CHCl3 CCl4
100 °C 400 °C

Cs8 1.06 1.11 1.28 1.16 1.18 1.25 1.30 1.28 1.23
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cal particles is given for small Knudsen numbers Kn=l /a
!1 (l is the mean free path), corresponding to the so-called
near-continuum,OsKnd, Hilbert-Chapman-Enskog[2] re-
gime, by the following expression:

U = − Csy = ln T. s17d

This relation was originally derived theoretically by Epstein
[3] (with Cs=3/4 in thecase of monatomic Maxwell mol-
ecules[2,20]). Its constitutive form was subsequently con-
firmed experimentally by numerous researchers[16–18], al-
beit with the phenomenological coefficientCs appearing
therein regarded from an experimental perspective as being
an adjustable parameter. Equation(17) is obviously identical
in constitutive format to our purely theoretical equation(16)
for gases in which, however, in place of our constantOs1d
coefficient Cs8, there now appears the so-called Maxwell
thermal-creep slip coefficientCs [4].

Epstein’s [3] theoretical derivation of Eq.(17) is based
upon Maxwell’s [4] gas-kinetic theory analysis of noncon-
tinuum thermal stresses existing in proximity to a solid body
along whose surface the proximate gas temperature varies. In
turn, these thermal stresses were viewed by Maxwell as caus-
ing slip of the gas’s mass velocity along that surface, as
embodied in his widely cited formula

I s ·vm = Csy=s ln T s18d

for the relative tangential-slip mass velocityvm between the
gas and the surface of the particle. In contemporary terms,
Maxwell’s thermal stresses are regarded as deriving from the
noncontinuum,OsKn2d, so-called Burnett terms appearing in
the Chapman-Enskog[2] small Knudsen number perturba-
tion expansion of the Boltzmann equation for monatomic
ideal gases. In gas-kinetic theory[2] deriving from the Bolt-
zmann equation, the NS and Fourier equations are, respec-
tively, regarded as quantifying “near-continuum,”OsKnd,
linear momentum and internal energy transport phenomena,
with the OsKn0d;Os1d “continuum” terms appearing in the
perturbation expansion identified with the Euler equations
characterizing the mechanics of ideal fluids[21].

Following Maxwell’s introduction [4] of his thermal-
creep formula Eq.(18) (albeit originally in a different physi-
cal context involving the phenomenon of thermal transpira-
tion [22]), and its subsequent adoption by Epstein[3] in
rationalizing thermophoresis(strictly, rationalizing the work-
ings of Crookes’ radiometer[23]), the nature and magnitude
of the slip coefficientCs has attracted the attention of a num-
ber of theoreticians and experimentalists. Theoretical values
of Cs have ranged from Maxwell’s[4] original, molecularly
derived, value of 3/4 for monatomic Maxwellian molecules
to Derjaguinet al.’s [18] irreversible thermodynamically de-
rived value ofCs=3/2. These compare with Talbotet al.’s
[17] “best-fit” average experimental value of 1.17 for a va-
riety of different gases.[The fact that Talbotet al. [17] and
other experimentalists recommend but asingle Cs coefficient
(approx. 1.17) for all gases is at odds with our theoretical
predictions, according to which this coefficient should vary
to some extent with the degree of polyatomicity of the par-

ticular gas(as evidenced by the data in Table I as well as by
the Eucken approximation thereof).]

Our theoretical formula(16) (in conjunction with the data
for Cs8 in Table I) for gaseous continua obviously accords
extremely well, both constitutively and phenomenologically,
with its “best-fit” experimental data correlation counterpart
Eq. (17), the latter valid for the near-continuum, Kn!1 re-
gime. However, our formula Eq.(16) is based upon strictly
continuumequations and no-slip arguments, albeit nontradi-
tionally supposing the velocityv appearing in Eqs.(1) and
(5) to be given byv=vv, whereas Epstein’s alternative theo-
retical formula Eq. (17) derives from noncontinuum
vm-based Maxwell slip arguments[4].

B. Liquids

Reference[15], which extends Eq.(15) to the case of
heat-conducting particles, compares the resulting velocityU
with the experimental liquid-phase thermophoretic data of
McNab and Meisen[24]. Without repeating what is stated in
greater detail in Ref.[15], suffice it to say here that Eq.(15)
accords satisfactorily with McNab and Meisen’s data.
Clearly, liquids are incapable of displaying noncontinuum
behavior with respect to rationalizing the thermophoretic
movement of macroscopic(non-Brownian) particles. As
such, there does not appear to be any rational basis for sup-
posing slip of the velocityv to occur at a liquid-solid inter-
face, certainly not as a result thereat of the presence of a
surface temperature gradient. In any event, in contrast with
our Eq.(15), Epstein’s formula(17), being applicable on the
basis of its derivation only for gases, fails to offer any theo-
retical explanation for the thermophoretic particle motion ob-
served by McNab and Meisen[24] in liquids, much less
furnishing a quantitativecontinuumtheory thereof[15].

Semenov and Schimpf[25] offer an alternativevm-based
theory of thermophoresis in liquids, different from that em-
bodied in Eq.(15). Nevertheless, as in our Eq.(15), the
particle’s thermophoretic velocityU is predicted to be pro-
portional tob=T0, in addition to being independent of par-
ticle size. However, unlike our Eq.(15), which depends only
upon the physicochemical properties of the fluid, but not
those of the solid particle, Semenov and Schimpf’s expres-
sion forU does depend upon the particle’s properties, explic-
itly as embodied in the particle’s Hamaker constant. A quan-
titative comparison of the two theories is offered elsewhere
[26] in the context of establishing the extent of their respec-
tive accord with experiment. In effect, each furnishes ther-
mophoretic particle velocitiesU for liquids that agree rea-
sonably well, at least as regards order of magnitude, with the
limited experimental data available, although these data are
themselves subject to some interpretative ambiguity.

IV. DISCUSSION

A. Justification of the key simplifying assumptions
underlying Eq. (15)

Rationalization of use of the creeping flow approximation
Eq. (9) to the full NS continuity equations rests upon the
smallness of the sphere’s Reynolds number Re=aU/y, in
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which U= uUu. Use of Eq.(15) together with the facts that
b=Os1/Td in which sTh.T.Tcd, and u=T0u=sTh−Tcd /L
thus yields the estimate Re=Pr−1sa/Ld. Inasmuch as we have
supposed thata/L!1, and since Pr=Os1d for gases[10], the
Reynolds number will always prove to be very small in the
case of gases. Moreover, the time- and possibly position-
dependent motion of the sphere automatically proves to be
quasisteady owing to the smallness of the particle Reynolds
number, as well as of the respective magnitudes of the sev-
eral time scales involved in the unsteady-state transport
equations owing to the relatively large distance of the sphere
from either wall. The situation is even more favorable in the
case of liquids, since their Prandtl numbers are invariably
greater, often much greater, than unity[10]. Only in the case
of particle motion in liquid metals, for which Pr
=10−3 to 10−2 [10], would there possibly be any concern
about neglecting both unsteady and convective inertial ef-
fects.

The pressure and viscous dissipative terms that would, in
general circumstances, ordinarily appear in the energy equa-
tion (10), but which have been neglected here, are, respec-
tively, bTsDmp/Dtd and 2m=v : =v [10, p. 589] Upon defin-
ing «=bosTh−Tcd, in which the subscript “o” represents a
characteristic value of the pertinent parameter to which it is
affixed, the scaling of the various fields entering into esti-
mates of the relative orders of magnitude of the various
terms appearing in the complete energy equation are as fol-
lows: bo=Os1/Tod, v=Os«ao/Ld, p=po+Os«roao

2/L2d, T
=To+OsTh−Tcd, r=ro+Os«rod, and ==Os1/Ld. It readily
follows from these estimates that the neglected terms in the
energy equation are indeed small compared with those re-
tained. This conclusion is especially transparent if attention
is limited to the case of relatively small temperature differ-
encessTh−Tcd /To between the walls, with« then regarded as
playing the role of a small perturbation parameter,«!1. In
any event, the general conclusion regarding negligibility re-
mains true even in circumstances where«=Os1d.

Justification for our having ignored pressure gradient ef-
fects in the analysis leading up to Eq.(15) resides in the fact
that ¹2vv

s0d=0 according to Eq. (14). Accordingly, the
vv-based creeping flow equation(9) yields =ps0d=0, thus
contributing to the general notion that during thermophoresis
pressure gradient effects do not sensibly affect density gra-
dients compared with temperature gradient effects upon the
latter. Although this argument applies strictly only to the un-
disturbed, particle-free flow Eq.(14), the force-free nature of
the “disturbed” flow arising when the point-size particle is
present ultimately leads to a similar conclusion, surely an
obvious one in the case of liquids.

B. Maxwell’s slip condition as a continuum-level phenomenon

As shown earlier, the conventionalsv=vmd-based con-
tinuum creeping flow and incompressible continuity equa-
tions (9) and (8), together with the similarly based, no-slip
boundary condition(5), fail to predict the existence of ther-
mophoretic forces and, hence, the phenomenon of thermo-
phoresis. Accordingly, the excellent agreement, both consti-
tutively and phenomenologically, of our unconventionalv

=vv fluid-mechanical model with gas-phase experiments
must be construed as furnishing pertinent evidence in sup-
port of Eq. (2) over Eq.(3), the latter of course in the ab-
sence of Maxwell slip arising from noncontinuum sources.
The credibility thereby conferred upon our purely continuum
volume-velocity hypothesis is further enhanced by the fact
that our unconventionalvv-based no-slip condition Eq.(5) is,
following the introduction of Eq.(12) into the boundary con-
dition I s·vv=0 on ]Vs, seen to be constitutively identical to
Maxwell’s mass-velocity-based slip condition(18), with the
two expressions differing only in their respectiveOs1d phe-
nomenological coefficientsCs andCs8. As discussed in detail
elsewhere[26], this agreement between our purely con-
tinuum,vv-based, model of mass slip along the surface of the
sphere and Maxwell’s[4] original model thereof, embodied
in Eq. (18), strongly suggests that the attribution of thermo-
phoretic particle movement tononcontinuumphenomena, an
assignation implicitly embodied in Epstein’s Eq.(17), is in-
appropriate. This conclusion accords with the independent
reassignment by other researchers[27] of the OsKn2d non-
continuum Burnett thermal stress terms[28,2] to theOsKnd,
NS fluid-mechanical level, a topic extensively reviewed in
Ref. [26].

C. Tracer velocity

The arguments favoring Eq.(2) over Eq.(3) are further
augmented by recognizing that Eq.(15) [and its experimen-
tally confirmed counterpart[16–18] for gases, Eq.(17), with
Cs<1.17] is independent of the size of the particle. As such,
the particle’s thermophoretic velocity(15) qualifies as con-
stituting the tracer or Lagrangian velocityvlª s]x /]tdx0

of
the undisturbed fluid, namely, the fluid from which the
velocity-monitoring tracer particle is absent. In other words,
our claim is that Eq.(15), representing the velocity through
space of a passive(i.e., non-heat-conducting), non-Brownian
tracer particle—the latter constituting apoint-sizeforeign ob-
ject entrained in the “flowing” fluid—is, in fact, physically,
the velocity v=vl of the particle-free fluid continuum at a
point x along the trajectoryx=xsx0,td. The latter curve de-
notes the spatiotemporal path of a hypothetical “fluid par-
ticle,” whereinx denotes the current position in space at time
t of the particular infinitesimal fluid particle that at an earlier
time t=0 was situated at the spatial positionx0. This fluid-
particle/tracer-particle velocity interpretation,vl =U, is fur-
ther supported by the fact that according to theory[15] (see
also the Appendix), U is independent of the tracer particle’s
shape as well as of the latter’s orientation in space relative to
the direction of that of the externally imposed vector=T0.
(Certainly, in order to qualify physically as a tracer of the
undisturbed fluid motion, it would surely be required that the
fluid’s velocity vl be independent of the shape of the particle
serving to measure this velocity.) Our conclusions regarding
particle size and shape independence appear to be confirmed
by independent calculations[29], revealing that the thermo-
phoretic velocities of simulated soot particles are “remark-
ably insensitive to aggregate size and morphology.”

By definition, a fluid’s tracer velocity through space is
necessarily given by the expressionvl =U, with U the veloc-
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ity of a passive, effectively point-size, material tracer par-
ticle. As such, in contrast to the continuum fluid’saphysical
velocities, namely,vm andvv (respectively representing dis-
guised mass- and volume-flux densities or current densities
nm/r andnv, as discussed in[6]), the fluid’s tracer velocity
vl represents the actual physical velocityv of the fluid
through space, as objectively monitored by the entrained
tracer’s space-time trajectoryx=xsx0,td. From Eq.(12), the
fluid’s undisturbed “motion” in the present, wall-bounded,
temperature gradient animation case, corresponding to the
seemingly static-fluid, pure heat conduction casevm=0 is
vv=−skC/ ĉpd=T. Since the latter is seen to be identical toU,
as given by Eq.(15), and, hence, tovl, one has thatvl =vv, at
least in present circumstances. Accordingly, this latter con-
clusion is equipollent to the more physically meaningful re-
lation

v = vl . s19d

In this expression, the strictlydynamicalconcept of the dif-
fuse transport of momentum[the latter as embodied in the
presence ofv in Newton’s viscosity law Eq.(1)] is formally
reunited with the strictlykinematicalnotion (as embodied in
vl) of the movement through space of the object transporting
that momentum[namely, the fluid particle traversing the tra-
jectory x=xsx0,td]. In assessing the philosophical import of
Eq. (19) on the subject of fluid mechanics, one needs to be
consciously aware of the fact that the thermophoretic particle
tracer motion, as quantified byU, does not represent the
motion of a foreign objectthrough the fluid but, rather, the
motion of this objectwith the fluid, i.e., an object entrained
in the already “flowing” fluid[cf. Eq.(14)] and hence simply
moving through space at the local velocityvl of the fluid
continuum[30].

V. CLOSURE

A. Other experimental evidence favoring Eq. (2) over Eq. (3)

The experimental data advanced in this paper in support
of the viability of the relationv=vv address only the phe-
nomenon of thermophoresis. However, other equally credible
experimental evidence exists favoring Eq.(2) over Eq.(3).
In the case of gases, these additional experimental data in-
clude thermal transpiration[22] in single-component fluids
and diffusiophoresis[31] in isothermal, compositionally in-
homogeneous, binary fluid mixtures(cf. [13]). In these other
classes of experiments the use of Eq.(2) leads to results that
accord well with experiments in gases. Similar agreement
with experiment(albeit of a less rigorously founded nature)
is observed when Eq.(15) is applied to rationalizeliquid-
phasethermal diffusion data[32] involving the Soret effect
[10].

B. Theoretical evidence in favor of Eq. (2)

Purely theoretical evidence pointing to the viability of Eq.
(2) over Eq.(3) is summarized in Ref.[26]. The latter paper
also presents formal arguments based upon the contribution
of Burnett’s [2,28] thermal stress terms to the viscous stress
tensorT Eq. (1), over and above the classicalvm-based New-

ton’s law deviatoric stress relationT =2m=vm+kI = ·vm.
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APPENDIX: ELEMENTARY CALCULATION
OF THE THERMOPHORETIC VELOCITY

OF A NONCONDUCTING SPHERE

1. Spherical particles

Consider velocity and pressure fieldssv ,pd satisfying the
generic incompressible creeping flow and continuity equa-
tions (9) and(8), in whichv is the field appearing in both the
deviatoric stress tensor(1) and the no-slip boundary condi-
tion (5). According to Faxen’s theorem[19] for such flows
satisfying a zero vector velocity boundary condition on the
sphere, namely,v=0 on ]Vs, the hydrodynamic forceF ex-
erted by the fluid on a solid sphere of radiusa translating
with velocity U when immersed in an incompressible creep-
ing flow, sayhvs0d ,ps0dj, satisfying Eqs.(9) and (8) far from
the sphere, is given by the expression

F = 6pmaFsvs0d − Ud +
a2

6m
= ps0dG

o

. sA1d

The corresponding torqueL o is

L o = 8pma3F1

2
= 3 vs0d − VG

o
, sA2d

in which V is the sphere’s angular velocity. The subscript
“o” appended to the above expressions connotes evaluation
of the indicated quantities at the centero of the fluid space
presently occupied by the sphere. Accordingly, a force- and
torque-free sphere will, in the absence of wall effects asso-
ciated with the nonzero nature of the size ratioa/L, translate
quasistatically with a velocity

U = vo
s0d +

a2

6m
= po

s0d sA3d

and rotate at an angular velocity

V =
1

2
s= 3 vs0ddo. sA4d
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In the past, Faxen’s laws, Eqs.(A1) and (A2), have only
been applied to the usual case, wherev=vm. However, from
a purely mathematical view, Faxen’s laws may equally well
be applied any velocity fieldv satisfying Eqs.(9) and (8),
provided thatv also satisfies a vanishing vector velocity
boundary conditionv=0 on ]Vs. As discussed in[33], the
latter condition is applicable to the choicev=vv for situa-
tions in which the sphere is nonconducting(and, generally,
only in that case). The undisturbed volume velocity fieldvv

s0d

existing in the absence of the sphere is given by Eq.(14) as
vv

s0d=−ab=T0=const, in which, by definition,=Ts0d; =T0
=const s∀ xd. This velocity field obviously satisfies the
quasi-incompressibility condition(11), namely, = ·vv

s0d=0,
sincevm

s0d=0 and =2Ts0d=0. Moreover, we see thatvv
s0d also

satisfies the vv-based creeping flow equations=ps0d

=m=2vv
s0d, in which =ps0d=0. Thus, Eq.(A3) becomes

U = − ab = T0. sA5d

Additionally, Eq. (A4) becomesV=0 [34]. In the noncon-
ducting particle limit, Eq.(A5) accords with the more gen-
eral formula [15] U=−abf1+sks/2kdg−1=T0, applicable to
the conducting sphere casesks/kÞ0d, and derived by solving
the complete, coupled boundary-value problem for that case.

2. Nonspherical particles

Equation (A5) is applicable not only to spheres, but
equally to any nonconducting particles, irrespective of their

shape and orientation. This follows from the fact that the
generalization of Eq.(A1) for an arbitrarily shaped(nonro-
tating) particle [19,34] is F=M −1·fsvs0d−Ud+Osa/Ldgo,
whereM is the particle’s(torque-free) mobility dyadic,a is a
characteristic particle size, andL is a characteristic length
appearing in the dimensionless normalization=* = L= of the
gradient operator appearing explicitly in the undisturbed
nonuniform flowvs0d [so that theOsa/Ld term represents a
wall effect]. Accordingly, the velocity of such a force-free
body isU=vo

s0d+Osa/Ld. With use of Eq.(14), one thus re-
covers Eq.(A5). Thus, remarkably, as is more formally dem-
onstrated in Ref.[15], irrespective of size, shape, and orien-
tation relative to the undisturbed temperature gradient=T0,
nonconducting particles will all move with the same velocity
U. Accordingly, provided that one interprets fluid motion
physically as being the fluid’s volume velocity rather than its
mass velocity, Eq.(A5), expressed more generally asU
;svl

s0ddo=svv
s0ddo+Osa/Ld, simply states that any passive

(i.e., nonconducting), no-slip, thermophoretically animated
particle is simply entrained in the flowing fluid. Alterna-
tively, with use of Eq.(12), this may be written more gener-
ally as

U ; vl
s0d = vm

s0d − ab = Ts0d + Osa/Ld, sA6d

a result which holds in all situations wherein a temperature
gradient exists in the fluid.
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