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Is the tracer velocity of a fluid continuum equal to its mass velocity?
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Owing to its size independence in the so-called near-continuum vanishingly small Knudsen number regime
(Kn<1), thermophoretic particle motion occurring in an otherwise quiescent gas under the influence of a
temperature gradient is here interpreted as representing the motion of a tracer, namely, an effectively point-size
test particle monitoring the local velocity of the undisturbed, particle-free, compressible gas continuum through
space. “Compressibility” refers here not to the usual effect of pressure on the gas’s massglbuositgther
to the effect thereon of temperature. Our unorthodox continuum interpretation of thermophoresis differs from
the usual one, which regards the existence of thermophoretic forces in gases as arsriciptinuum
phenomenon, involving thermal stress-induced Maxwell $tipermal creepj of the gas’s mass velocity,, at
the surface of the particle, with,, denoting the velocity appearing in the continuity equation expressing the
law of conservation of mass. Explicitly, instead of regarding the thermally animated particle as riwoingh
the gas, we regard the particlen its hypothesized role as a tracer of the undisturbed, particle-free, fluid
motion) as movingwith the gas, through space; that is, the particle is viewed as simply being entrained in the
flowing gas, which, as a result of an externally applied temperature gradient, was already in motion prior to the
tracer’s introduction into the fluid—albeit not mass moti@hich is, in fact, identically zerpbut rather
volume motion. This tracer-particle interpretation of experimental thermophoretic particle velocity measure-
ments raises fundamental issues in regard to the universally accepted Newtonian rheological law constitutively
specifying the viscous or deviatoric strésss being proportional to theymmetrized, tracelesfuid velocity
gradient Vv, with v identified as being the fluid’s mass velocity, Rather, it is argued in the case of
compressible fluids, including liquids, thatshould, instead, be chosen as the fluid’s volume flux density or
current densityn,,, the latter being formally equivalent to the fluid’s volume veloaity which differs fromv,,
except in the case of incompressible fluids. Apart from this strictly constitutive issue in redgeyd te further
argued that the fluid’s tracer or Lagrangian veloaity= (¢9x/(3?t)x0 along the fluid’s spatiotemporal trajectory
X=X(Xg,t) is equal tov,, rather than to,,. This too is contrary to the heretofore unquestioned supposition that
the conceptually distinct fluid velocities andv,, are not only equal but are, in fact, synonymous. To the extent
thatv, # v, in the nonisothermal fluid case, an optical dye- or photochromic-type experigssit of the latter
two experiments presumably serving to measugewill record a different velocity than would a comparable
tracer particle velocity measurement, one that measyres
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I. INTRODUCTION imposed upon the volume velocity, [5,6] rather than upon
Vi, While concurrently introducing a correspondingbased

This paper offersjnter alia, an unconventional, purely modification of Newton’s original,-based rheological law

continuum interpretation of existing thermophoretic particle L . .
velocity data[l]pfor gases in the sgo—called E]ear-congnuumenter'ng into the formulation of _the Nawer—Stok@SS)
small Knudsen number regimg2]. Moreover, during the gqugtlon[?]. Moreover, our analysis of thermophoretic mo-
course of the analysis, basic hydrodynamic relations are déion is believed to be applicable not only to gases but also to
veloped for more general situations in which temperaturdiquids, although the limited amount and quality of the
gradients exist within a fluid, the latter including liquids. The liquid-phase data currently available in support of this thesis
applicability of these formulas and notions transcends thére considerably less authoritative than in the gaseous case.
particular thermophoresis focus of the present paper. We propose a fundamental modification of Newton’s vis-
Epstein’s [3] widely accepted explanation of thermo- cosity law, wherein the velocity appearing in the constitu-
phoresis in this regime invokes Maxwellg] ubiquitous tive expression
thermal creep boundary condition, involving temperature-
gradient-induced slip of the mass velocity, along the par- T= 2,uﬁ+ WAV v (1)
ticle surface, in conjunction with use of the classical Navier-
Stokes (creeping flow equation governingv,, for the
incompressible fluid cas-v,,=0. In contrast, our alterna- - )
tive, strictly continuum, explanation of the phenomenon offltid’s volume velocity[S],
thermophoresis retains the classical no-slip condition, albeit

for the deviatoric stress is here assumed to be given by the

V=V, 2
*Email address: hbrenner@mit.edu rather than by its usual mass velocity,
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V=V, ©)] A. “Incompressible” creeping flow

As is demonstrated posteriori consistent with Epstein’s
The symbolv,, refers to the velocity appearing in the conti- [3] small Reynolds number analysis of thermophoresis, fluid
nuity equationdp/dt+V -(pvyy) =0, or, which is equivalent,  motion engendered by thermophoretic particle movement at
small Knudsen numbers is henceforth assumed to be gov-
—DpInp/Dt=V v, (4) erned to a satisfactory degree of approximation by the qua-
sistatic creeping flow and “incompressible” continuity equa-
with D,/Dt:=4d/dt+v,,-V the so-called material derivative. tions
In Eqg. (1) u is the shear viscosity the bulk viscosity, andl

the unit dyadic. The overbar appearing in the expression for 0=-Vp+V. T ()
T in Eg. (1) denotes the symmetric and traceless portion ofand
the dyadic which it surmounts; that iD:=2(D+DT) V.v=0 ®

—%I (I:D) for any dyadicD.
Why should one question the validity of Newton’s again with the choice, Eq2) or Eq. (3), of the velocityv
v-based viscosity lawl =2uVv,,+«l V -v,,? Objective ex- remaining operi8]. Introduction of Eq.(1) into Eq.(7) fol-
perimental evidence existing in the literature in support oflowed by use of Eq(8) yields
this constitutive relation is based primarily upon theom- Vo= 4V 9)
pressible isothermal fluid case, whegeis uniform through- P=pVV,
out the fluid(while also supposing the usugj-based no-slip in which we have regardeg as being essentially constant
boundary condition to be applicable at solid surfacés  throughout the fluid.
contrast, the present paper addresses key evidence regarding )
these issues for the case of “compressible” fluids, wipese B. Energy equation
no longer constant throughout the gas owing to temperature In the present single-component gaseous or liquid-phase
variations therein. Explicitly, in what follows we critically heat transfer case being anayzed, we suppose that the fluid’s
examine single componeriessentially isobaricgas flow  equation of state is such thato(T), with 9=1/p the spe-
data associated with thermophoretic particle motion incific volume of the fluid. By thereby ignoring pressure ef-
nonisothermal gases subjected to externally imposed homgects upon fluid density it is thus implicitly assumed in the
geneous temperature gradients, where the gas depsity thermophoretic problem subsequently addressed either that
=p(T), rather than being uniform throughout the fluid, variesthe heat transfer process occurs essentially isobarically, or
locally with temperaturd. At the same time as we question else that pressure gradient effects upon the density gradient
Newton’s viscosity law, we also inquire as to why an excep-Vp are small compared with comparable temperature gradi-
tion should be made, as has been done by Ep§8im his  ent effects.[We do not, however, ignore pressure gradient
explanation of thermophoresis, to the usugalbased no-slip  effects in the creeping flow equatia®).] It is further as-
boundary condition in circumstances where the conventionadumed that the “thermal law of adiabatically additive vol-
incompressiblecontinuum NS equations are nevertheless umes”[5,9] applies to the fluid in question, corresponding to

used to describe the fluid motion. the approximation thado /dT=const=C, say, independently
The usual assumption of a no-slip tangential velocityof T (and, of coursep) or, equivalently, ofp, at least over
boundary condition at a solid surface requires that small ranges of temperature. The fluid’s specific heat capac-
ity €, is also assumed to be a temperature-independent con-
Is-v=0 on solid surfaces, (5) stant.

An internal energy balance leads to the usual transport
where the dyadi¢¢:=1-nn is the surface projection opera- equation[10] governing the temperature field,
tor, in whichn is the unit outer normal vector on the solid N
surface. For the time being we leave upon the question of pPEDRT/DL=V - (kVT), (10)
whether the velocity appearing in Eqg.1) and(5) is given  in which viscous dissipatiofand pressuneeffects have been
by vi, or v, with the correct physical choice eventually to be neglected(cf. [10, p. 589), assumptions which will be jus-
decided on the basis of comparing the respective theoreticgfied a posterioriin the case of thermophoretic phenomena.
calculations based thereon of the particle’s thermophoretigiere, k is the fluid’s thermal conductivity, which will ulti-
velocity U with experimental data for each of the two cases.mately be taken to be a constant, independenf.dfise of
Complete specification of the vector velocity boundary con-our assumed additive-volume law, namedy,=C dT, leads
dition at a solid surface necessitates further imposing theo the elementary identit,,T/Dt=C'D,»/Dt. The latter,
usual mass velocity requirement that the solid be impenin conjunction with the fact thai=1/p, enables Eq(10) to

etrable to mass flow: be rewritten as &,C™'Dy,In p/Dt=V -(kVT). Comparison
of the preceding expression with E@) thus yields the fol-
n-v,=0 on solid surfaces, (6) lowing “quasi-incompressibility” relatiof5,9]:
V-.v,=0, (11

wherein no doubt exists as to which velocity is to be used in
the latter expression. in which the symbol, is here defined afl1]
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V, = Vi, — (kC/ép) VT. (12) The impenetrability of the sphere and walls to mass re-

_ ) ) ) quires that Eq(6) be satisfied on these surfaces. Further-

The latter pair of equations effectively accord with those Ofmore, the no-slip tangential velocity boundary condition on
Pukhnachoy12]. _ _ the sphere and wall surfaces necessitates thatFdpe sat-

That the right-hand sideRHS) of Eq. (12) does indeed sfied thereon. The presence in our modified NS theory of
co_nsntutlvely quallfy in present circumstances as being theyo velocities, namelyy,,, andv,, rather than a single fluid

fluid's volume velocity is shown elsewhef8]. However, for  ye|ocity as in traditional NS problems, raises the question of

present purposes the explicit physical interpretation to bgynich of these two velocities is to be selected to satisfy this
assigned to the symbal,, here defined by Eql2) and o glip condition.

satisfying (11), is functionally irrelevant in terms of what
follows [13,14. The only relevant issue in relation to use of
this symbol in the subsequent analysis pertains to the fact B. Thermophoretic velocity

that we propose to demonstrate the physical correctness of 4 5iculate the velocity of the sphere for each of the

the choice of Eq(2) over Eq.(3) by utilizing available ex- o ~hoices ofv, namely, Eqs(3) and(2), we first solve the

perimental thermophoresis data, with the unadormned symboy, e system of steady-state equations and boundary condi-
v being that appearing in Eqel) and(5). This scheme en- iqng for the fields(vy,V,,p,T,p) for the stationary sphere

tails solving the coupled continuity, momentum, and energy. sey=0. Knowledge of the fieldgv, p), with v=v,, or v,,

equatiqns for the qugrtef[ of fielcﬂgm,p,p,T), using the hy- enables the Cauchy stress tenBer-Ip+T to be calculated
pothesis forv embodied in the unio2) & (12). for each of these two cases and ultimately, therefrom, the
respective forcesF:gSavstn-P [and torquesLozsﬁWS(x
—X,) X dSn-P, about the sphere centeo™, if any, exerted
IIl. THERMOPHORETIC PARTICLE MOTION by the fluid on the sphere. In turn, this knowledgeFoand

The above trio of Coupled mass, momentum, and energyo for the Stationary Sphere case permits calculation of the
transport equations is readily solvgtb] so as to eventually duasi-steady velocity) with which a force- and torque-free
obtain the thermophoretic velocity through space of a Sphere will move through spacee., relative to the space-
force- and torque-fregnon-Brownian spherical particle in fixed wall9. _Th|s calculation is performed below for each of
an effectively unbounded fluid under the influence of athe two choices ofr.
steady, externally imposed, temperature gradi®ii;, say.

Explicitly, consider a sphere of radigsimmersed in a vis- 1. The casev=vp,

cous fluid(gas or liquid confined between a pair of parallel,
impermeable, heat-conducting, hot and cold walls permag;
nently maintained at the respective temperatdiesand T.
The hot and cold walls, respectively, situatedxatd andx
=L, extend to infinity in they and z directions, so that the

externally_ mlposeql temperature gre_u_1|ent.V§'0_=: —X(Th ternal to the sphere. From EL0) the temperature field for
—-To)/L, with X a unit vector in the positive direction.(The this case satisfies Laplace’s equatiéiT=0 (with k assumed

mi?_u.s. signf aﬁpearing in the latter eﬁprgssicr)]n refle_cts th‘Eonstant throughout the fluidit is obviously unnecessary to
definition of the gradient operatd¥, wherein the gradient qe expiicitly for either the temperature fielix) [with

points in the direction in which the scalar field upon which itx=(x,y,z)] or for the concomitant density fielax) in order

%paﬁ;?ic;ﬁg;issﬁwﬁ?&%;?ailézzo\?viiraebfheentsngreegIilglgilteu to arrive at the conclusion that no force or torque acts on the
ated far from either wall and satisfies the inequabtiL sphere, and hence thet=0 for this case. Accordingly, the

<1, we seek to calculate the for¢and torqug, if any, re- conventional (v=v,,)-based incompressible continuity and

quired to maintain the sphere fixed in place relative to the-reepPing flow equations, Eqé) and(9), satisfying the usual

walls. Such knowledge ultimately permits calculation of theno'SIIp mass veIoc@y boundary condmgg-vmzo on the
sphere’s thermophoretic velocity. sphere surfac@V; fails to predict the existence of thermo-

phoretic particle movement—a result which clearly holds ir-
respective of the shape of the parti¢te even of its thermal
conductivity, sayks, were one to consider the conducting
particle casg It was this failure of the traditional
For simplicity, attention is subsequently confined to the(v=v, )-based equation set to predict the experimentally ob-
case where the sphere is effectively non-heat-conductingeryed thermophoretic movement of particles suspended in
compared with the fluid's thermal conductivity. As such, thegases that led Epste|i8], later followed by othergsee the
thermal_ boundary condition on the sphere surface, &y  detailed review in Ref[15]) [16-1§, to seek a noncon-
necessitates that tinuum Maxwellv,-slip-based explanation of thermophore-
_ sis.
n-VT=0 ondvs (13 We note here for later reference that wherags=0
Additionally, it is required thafT=(T,,T.) at x=(0,L) for  throughout the fluid in present circumstances, there does,
0 (y,2). nevertheless, exist a nonzero volume velocity fig|dx)

This choice leads straightforwardly to the trivial conclu-
on thatv,=0 (O x) and, furthermore, thap=const=p,,

say (whence P=—-Ipy=consj. As such, the basic trio of
transport equations degenerates to the problem of steady-
state heat conduction throughout the static fluid domain ex-

A. Boundary conditions
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TABLE I. C{ values for various monatomic, diatomic, and polyatomic gases at 0 °C and 1 atm

pressure.
Monatomic and diatomic gases
Gas Ne Ar H N>, 0O, Air CcO NO Cl,
C. 1.50 1.50 1.43 1.37 1.35 1.37 1.32 1.30 1.32
Polyatomic gases
Gas HO CO, SO, NH3 CoHy CoHg CHCl;, CCly
100 °C 400 °C
C. 1.06 111 1.28 1.16 1.18 1.25 1.30 1.28 1.23

# 0 for thisv=v,, case. This volume velocity may be derived of the three thermal transport and equilibrium properties ap-
from Eg. (12) in conjunction with the detailed temperature pearing on the right-hand side of this product have, individu-
field T(x). Obviously, far from the spherg,, is given by the ally, been supposed constant. According to its derivation, Eq.

expression (15) is equally applicable to both gases and liquids. Since
© R B> 0 for virtually all fluids over the entire range of tempera-
v, == (kClE,) VTo=const (xl/a—=). (14  tyres encountered in practice, the particle will generally

This far-field solution also represents thg-based volume MOVe in a direction opposite to that of the temperature gra-
velocity field existing throughout the undisturbed, sphere-di€nt, namely, in the positive direction, from hot to cold.

free fluid confined between the hot and cold walls. Among other things, it is interesting to note that the velocity
U given by Eq.(15) is independent of the sphere’s size. As
2. The casev=v, such, all other things being equal, and to the extent that our

theory proves to be correct, a boulder-sized body will move
at exactly the same velocity as would an effectively point-
sized(albeit non-Browniaip body.

With this alternative choice of, the transport equations
and boundary conditions governing outlined earlier, will
be seen to lead to nontrivial physical results, whetéi# 0.
Among other things, in contrast with the findings for the
precedingv=v,, case, the no-slip conditioh,-v,=0 on ¢V I1l. COMPARISON OF EQ. (15)
imposed upon the volume velocity, in the present case WITH EXPERIMENTAL DATA
leads to a situation where, as a consequence of(Ep,
there is now a slips-v,=(kC/C,) VT of the fluid's mass
velocity v, along the sphere surfa@¥,. As such, a no-slip By definition, a=Pr'v where Pr2,u/k is the fluid's
condition imposed upow, translates into a slip condition Prandtl numbef10] and v=u/p is its kinematic viscosity.
imposed uponv,, (Here, V.=1.-V is the surface gradient Inasmuch ag=1/T for ideal gases, one can write E15)
operaton In turn, this surface mass motion induces a bulkfor such gases in the form
mass flowv,,# 0 throughout the entire fluidalthough far o
from the sphere this mass motion will be sensibly zero, U=-CV InT, (16)
whence the distant volume velocity field for the present where the numerical consta@,=1/Pr is anO(1) dimen-
=v, case continues to be given by E@4), in both the sjonless phenomenological coefficient, dependent only upon
presence and absence of the sphere the physicochemical properties of the gas. The temperature

The mathematical details underlying the calculatiorof appearing in Eq(]_G) is to be interpreted as that existing in
in the present circumstances are set forth in the Appendixhe particle-free fluid in the neighborhood of the region cur-
where it is shown that the sphere’s thermophoretic velocityently occupied by thécenter of the sphere.
can be calculated trivially via the judicious use of Faxen's According to Eucken’s approximatigii0] of the Prandtl
laws [19], without the need to literally solve the requisite number (generally valid for nonpolar gasesone has that
coupled-equation boundary-value problem. This calculatiorpr=4/9-5y1), in which y=C,/¢, is the gas’s specific heat
leads easily to the following expression for the thermo-ratio. As y values for monatomic and diatomic ideal gases
phoretic velocity of the nonconducting sphere: are, respectivelyy=5/3 and 7/5, it follows, at least ap-

U=-aBVT, (15) proximgtely, thatC.=1.5 for monatomic gases.and 1.36 for
diatomic gases. More accurately, actual experimental Prandtl
in which a=k/pt, and B=(dIn {)/aT)pE—p‘l(&p/&T)p are, number datd10, p. 277 furnish the results shown in Table |
respectively, the fluid’'s thermometric diffusivity and thermal for various monatomic, diatomic, and polyatomic gases.
expansivity. We note that the produgB=kC/¢, appearing Experimentally{16-18, in the case of gases, the thermo-
in Eq.(15) is a temperature-independent constant, since eagbhoretic velocityU of nonconducting non-Brownian spheri-

A. Gases
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cal particles is given for small Knudsen numbers Kria ticular gas(as evidenced by the data in Table | as well as by
<1 (\ is the mean free pathcorresponding to the so-called the Eucken approximation therggf

near-continuum,O(Kn), Hilbert-Chapman-Enskod2] re- Our theoretical formul@l6) (in conjunction with the data
gime, by the following expression: for C{ in Table |) for gaseous continua obviously accords
extremely well, both constitutively and phenomenologically,
U=-CwV InT. (17)  with its “best-fit" experimental data correlation counterpart

Eq. (17), the latter valid for the near-continuum, Kl re-

This relation was originally derived theoretically by Epstein gime. However, our formula Eq16) is based upon strictly
[3] (with C;=3/4 in thecase of monatomic Maxwell mol- continuumequations and no-slip arguments, albeit nontradi-
ecules[2,2Q)). Its constitutive form was subsequently con- tionally supposing the velocity appearing in Eqs(l) and
firmed experimentally by numerous researci@®-18, al-  (5) to be given byw=v,, whereas Epstein’s alternative theo-
beit with the phenomenological coefficiefil; appearing retical formula Eg. (17) derives from noncontinuum
therein regarded from an experimental perspective as being,-based Maxwell slip argumenid].
an adjustable parameter. Equatid?) is obviously identical
in constitutive format to our purely theoretical equatid) B. Liquids
for gases in which, however, in place of our constaxt) _
coefficient C., there now appears the so-called Maxwell Reference[15], which extends Eq(15) to the case of
thermal-creep slip coefficier@, [4]. h(_aat-conductmg part|cle_s, compares the resulting _velchd:lty

Epstein’s[3] theoretical derivation of Eq(17) is based with the experl_mental Ilqgld—phase th_ermopho_renc datg of
upon Maxwell's[4] gas-kinetic theory analysis of noncon- McNab and _I\/I.elser[|24]. Wlthput repeating what is stated in
tinuum thermal stresses existing in proximity to a solid bodygreater detail in Ref.15], suffice it to say here that EGL5)
along whose surface the proximate gas temperature varies. fcords satisfactorily with McNab and Meisen’s data.
turn, these thermal stresses were viewed by Maxwell as cau&/€arly, liquids are incapable of displaying noncontinuum
ing slip of the gas’s mass velocity along that surface, adehavior with respect to rationalizing the thermophoretic

embodied in his widely cited formula movement of macroscopi¢non-Brownian particles. As
such, there does not appear to be any rational basis for sup-
I V= CaVeIn T (18) posing slip of the velocity to occur at a liquid-solid inter-

face, certainly not as a result thereat of the presence of a

for the relative tangential-slip mass velocity, between the ~Surface temperature gradient. In any event, in contrast with
gas and the surface of the particle. In contemporary term&Ur Ed.(15), Epstein’s formulg17), being applicable on the

Maxwell's thermal stresses are regarded as deriving from thBasis of its derivation only for gases, fails to offer any theo-
noncontinuumO(Kn?), so-called Burnett terms appearing in "etical explanation for the thermophoretic particle motion ob-

the Chapman-Enskofg] small Knudsen number perturba- S€Tved by McNab and Meisef24] in liquids, much less

tion expansion of the Boltzmann equation for monatomiclurnishing a quantitativeontinuumtheory thereof15].

ideal gases. In gas-kinetic thedi] deriving from the Bolt- Semenov and Schimg29)] offer an alternativey-based
zmann equation, the NS and Fourier equations are, respef€0ry of thermophoresis in liquids, different from that em-
tively, regarded as quantifying “near-continuunmQ(Kn), bOd!Ed"” Eq.(15. Nevertheless, as in our Eql5), the
linear momentum and internal energy transport phenomen&®article’s thermophoretic velocity is predicted to be pro-
with the O(Kn® =O(1) “continuum” terms appearing in the port|onal toBV Ty, in ad_d|t|on to being m_dependent of par-
perturbation expansion identified with the Euler equa’[ion§ICIe size. However, un||!<e our Eq15), which depe_nds only
characterizing the mechanics of ideal fluj@4]. upon the physu;ochermcal properties of the flwd, but not
Following Maxwell's introduction[4] of his thermal- those of the solid particle, Semenov' and Sch|mpf’s expres-
creep formula Eq(18) (albeit originally in a different physi- f{:on forU gog_s ge_p%?d upci_n Ith,e aart'dﬁ N propetrnetsAexphc-
cal context involving the phenomenon of thermal transpira-'. y as embodied in € particie’s Hamaker constant. A quan-
tion [22]), and its subsequent adoption by Epsté in t|tat|ye comparison of the two _theones is offered leewhere
rationalizing thermophoresistrictly, rationalizing the work- [26] in the context of establishing the extent of their respec-

ings of Crookes’ radiometd3]), the nature and magnitude tive accord With. experimgnt. In eﬁ(.aCt'. each furnishes ther-
of the slip coefficienCg has attracted the attention of a num- mophoretic particle velocitiet) for liquids that agree rea-
ber of theoreticians and experimentalists. Theoretical value Onably well,_at least as regar(_js order of magnitude, with the
of C, have ranged from Maxwell'§4] original, molecularly imited expenmgntal data av:_;ulable, alt_hough thes.e data are
derived, value of 3/4 for monatomic Maxwellian moleculesthemsewes subject to some interpretative ambiguity.

to Derjaguinet al’s [18] irreversible thermodynamically de-

rived value ofC;=3/2. These compare with Talbat al’s IV. DISCUSSION

[17] “best-fit” average experimental value of 1.17 for a va-
riety of different gasegThe fact that Talbott al. [17] and
other experimentalists recommend bugiagle G coefficient
(approx. 1.1y for all gases is at odds with our theoretical  Rationalization of use of the creeping flow approximation
predictions, according to which this coefficient should varyEg. (9) to the full NS continuity equations rests upon the
to some extent with the degree of polyatomicity of the par-smaliness of the sphere’s Reynolds number &dAy, in

A. Justification of the key simplifying assumptions
underlying Eq. (15)
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which U=|U|. Use of Eq.(15) together with the facts that =v, fluid-mechanical model with gas-phase experiments
B=0(1/T) in which (T,>T>T,), and |VTy|=(T,—To)/L must be construed as furnishing pertinent evidence in sup-
thus yields the estimate Re=®@/L). Inasmuch as we have port of Eq.(2) over Eq.(3), the latter of course in the ab-
supposed thai/L <1, and since Pr&(1) for gaseg10], the  sence of Maxwell slip arising from noncontinuum sources.
Reynolds number will always prove to be very small in the The credibility thereby conferred upon our purely continuum
case of gases. Moreover, the time- and possibly positionvolume-velocity hypothesis is further enhanced by the fact
dependent motion of the sphere automatically proves to béhat our unconventional,-based no-slip condition E¢5) is,
quasisteady owing to the smallness of the particle Reynoldllowing the introduction of Eq¢12) into the boundary con-
number, as well as of the respective magnitudes of the sewition Is-v,=0 on 3V, seen to be constitutively identical to
eral time scales involved in the unsteady-state transpoflaxwell's mass-velocity-based slip conditioh8), with the
equations owing to the relatively large distance of the spher&vo expressions differing only in their respecti@1) phe-
from either wall. The situation is even more favorable in thenomenological coefficientS€; andC;. As discussed in detail
case of liquids, since their Prandtl numbers are invariablyelsewhere[26], this agreement between our purely con-
greater, often much greater, than urfitg]. Only in the case tinuum,v,-based, model of mass slip along the surface of the
of particle motion in liquid metals, for which Pr sphere and Maxwell'$4] original model thereof, embodied
=103 to 102 [10], would there possibly be any concern in Eq. (18), strongly suggests that the attribution of thermo-
about neglecting both unsteady and convective inertial efphoretic particle movement teoncontinuunphenomena, an
fects. assignation implicitly embodied in Epstein’s Ed.7), is in-

The pressure and viscous dissipative terms that would, iappropriate. This conclusion accords with the independent
general circumstances, ordinarily appear in the energy equéeassignment by other researchg2g] of the O(Kn?) non-
tion (10), but which have been neglected here, are, respecontinuum Burnett thermal stress terf28,2) to the O(Kn),
tively, BT(D,,p/Dt) and 24 Vv: Vv [10, p. 589 Upon defin- NS fluid-mechanical level, a topic extensively reviewed in
ing e=B,(Ty—T,), in which the subscriptd” represents a Ref.[26].
characteristic value of the pertinent parameter to which it is
affixed, the scaling of the various fields entering into esti-
mates of the relative orders of magnitude of the various
terms appearing in the complete energy equation are as fol- The arguments favoring Eq2) over Eq.(3) are further
lows: B,=0(1/T,), v=0(ga,/L), p=p0+O(spOa§/L2), T augmentgad by recognizing that Ed.5) [and its experimen-
=T, +O(T,~To), p=po+O(ep,), and V=0O(1/L). It readily tally conflrmgd counterpa[tLG—la.for gases, Eq(l?), with
follows from these estimates that the neglected terms in th&s=1.17 is independent of the size of the particle. As such,
energy equation are indeed small compared with those réh€ particle’s thermophoretic velocifL5) qualifies as con-
tained. This conclusion is especially transparent if attentiorstituting the tracer or Lagrangian velocity:= (x/dt), of
is limited to the case of relatively small temperature differ-the undisturbedfluid, namely, the fluid from which the
enceqT,,—T.)/ T, between the walls, witk then regarded as velocity-monitoring tracer particle is absent. In other words,
playing the role of a small perturbation parameteg1. In  Our claim is that Eq(15), representing the velocity through
any event, the general conclusion regarding negligibility re-SPace of a passiv@e., non-heat-conductingnon-Brownian
mains true even in circumstances whereO(1). tracer particle—the latter constitutingoaint-sizeforeign ob-

Justification for our having ignored pressure gradient ef/€Ct entrained in the “flowing” fluid—is, in fact, physically,
fects in the analysis leading up to E5) resides in the fact thg velocityv=v, of Fhe particle-free fluid continuum at a
that v2©=0 according to Eq.(14). Accordingly, the point x along the trajectork=x(xq,t). The Iatte_r curve de-
vv—basedu creeping flow equatia®) yields Vp©@=0, thus notes the spaﬂotemporal path of a hyp_othgtlcal “fluid par-
contributing to the general notion that during thermophoresigiCle.” whereinx denotes the current position in space at time
pressure gradient effects do not sensibly affect density grd-Of the particular infinitesimal fluid particle that at an earlier
dients compared with temperature gradient effects upon thiéMe t=0 was situated at the spatial positisg This fluid-
latter. Although this argument applies strictly only to the un-Particle/tracer-particle velocity interpretation,=U, is fur-
disturbed, particle-free flow Egl4), the force-free nature of ther supported by the fact that according to theldsy] (see
the “disturbed” flow arising when the point-size particle is 2SO the Appendix U is independent of the tracer particle’s

present ultimately leads to a similar conclusion, surely arph@pe as well as of the latter’s orientation in space relative to
obvious one in the case of liquids. the direction of that of the externally imposed vec¥r.

(Certainly, in order to qualify physically as a tracer of the
undisturbed fluid motion, it would surely be required that the
fluid’s velocity v, be independent of the shape of the particle
As shown earlier, the convention&=v,,)-based con- serving to measure this velocityOur conclusions regarding
tinuum creeping flow and incompressible continuity equa-article size and shape independence appear to be confirmed
tions (9) and (8), together with the similarly based, no-slip by independent calculatiorj29], revealing that the thermo-
boundary condition(5), fail to predict the existence of ther- phoretic velocities of simulated soot particles are “remark-
mophoretic forces and, hence, the phenomenon of thermably insensitive to aggregate size and morphology.”
phoresis. Accordingly, the excellent agreement, both consti- By definition, a fluid’s tracer velocity through space is
tutively and phenomenologically, of our unconventioval necessarily given by the expressigrU, with U the veloc-

C. Tracer velocity

B. Maxwell’s slip condition as a continuum-level phenomenon
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ity of a passive, effectively point-size, material tracer par-ton’s law deviatoric stress relatioh=2uVv,,+«l V v,
ticle. As such, in contrast to the continuum fluidphysical
velocities, namelyy,, andv, (respectively representing dis-

guised mass- and volume-flux densities or current densities ACKNOWLEDGMENTS
nn/p andn,, as discussed iff]), the fluid’s tracer velocity )
v, represents the actual physical velocity of the fluid | am grateful to Dr. James R. Bielenberg of the Los Ala-

through space, as objectively monitored by the entrained0S National Laboratory. He shared with me the pleasure of
tracer’s space-time trajecto’e=x(Xo,t). From Eq.(12), the performing the exact phoretic calculations cited throughout
fluid’s undisturbed “motion” in the present, wall-bounded, S paper, enabling a comparison between experiment and
temperature gradient animation case, corresponding to tH&€oretical predictions based upon the nontraditional
seemingly static-fluid, pure heat conduction cage=0 is volume-velocity hypothesis. | am also pleased to acknowl-
v,=—(kC/&,) VT. Since the latter is seen to be identicaltp edge many useful hours engaged in pertinent conve'rsatlons
as given by Eq(15), and, hence, tg,, one has that,=v,, at with Aruna Mohan, currently a graduate student in the
least in present circumstances. Accordingly, this latter conShemical Engineering Department at MIT, and Dr. Ehud

clusion is equipollent to the more physically meaningful re-(Udi”) Yariv of the Technion's Mechanical Engineering
lation Faculty. | am also grateful to Dr. Sangtae Kim, formerly of

Eli Lilly and Company, who was instrumental in arranging
V=V, (19 financial support from that organization for the research em-

In this expression, the strictlgynamicalconcept of the dif- bodied in this and related phoretic papers.

fuse transport of momentuifthe latter as embodied in the
presence off in Newton’s viscosity law Eq(1)] is formally
reunited with the stricthkinematicalnotion (as embodied in
v|) of the movement through space of the object transporting OF THE THERMOPHORETIC VELOCITY
that momentunjnamely, the fluid particle traversing the tra- OF A NONCONDUCTING SPHERE
jectory x=x(xg,t)]. In assessing the philosophical import of 1. Spherical particles

Eqg. (19) on the subject of fluid mechanics, one needs to be

consciously aware of the fact that the thermophoretic particle COT‘S'F’er velocny_ and pressure fields p) satlsf_ym_g the
tracer motion, as quantified by, does not represent the generic incompressible creeping flow and continuity equa-

motion of a foreign objecthroughthe fluid but, rather, the gon;(tQ) _andt(8), intWhiCEV is(’;htehfield a?pesring(jin hath tg?
motion of this objectwith the fluid, i.e., an object entrained eviatoric stress tensefl) and the no-slip boundary condi-

in the already “flowing” fluid[cf. Eq.(14)] and hence simply tion (5). According to Faxen’s theorerfl9] for such flows

; . h satisfying a zero vector velocity boundary condition on the
(r;%\::ggutrr:]r[%%?h space at the local velocity of the fluid sphere, namely=0 on dV,, the hydrodynamic forc& ex-

erted by the fluid on a solid sphere of radiadranslating
with velocity U when immersed in an incompressible creep-
ing flow, say{v(®,p©}, satisfying Eqs(9) and(8) far from

A. Other experimental evidence favoring Eq. (2) over Eq. (3)  the sphere, is given by the expression

APPENDIX: ELEMENTARY CALCULATION

V. CLOSURE

The experimental data advanced in this paper in support B © al ©
of the viability of the relationv=v, address only the phe- F=6mual (v -U)+ 64 vp©l - (A1)
nomenon of thermophoresis. However, other equally credible ©
experimental evidence exists favoring Eg) over Eq.(3).  The corresponding torquie, is
In the case of gases, these additional experimental data in- 1
clude thermal transpiratiof22] in single-component fluids Lo= 87T,ua3[—V x (@ _Q} , (A2)
and diffusiophoresi$31] in isothermal, compositionally in- 2
homogeneous, binary fluid mixturesf. [13]). In these other j, \yhich ( is the sphere’s angular velocity. The subscript
classes of experiments the use of E).leads to results that «q» 5nhended to the above expressions connotes evaluation
accord well with experiments in gases. Similar agreemenys yhe indicated quantities at the centenf the fluid space
with experimentalbeit of a less rigorously founded nature , asently occupied by the sphere. Accordingly, a force- and
is observed when Eq15) is applied to rationalizdiquid-  {5que-free sphere will, in the absence of wall effects asso-
phasethermal diffusion datd32] involving the Soret effect  ;iateq with the nonzero nature of the size ratid., translate

(10]. quasistatically with a velocity

(0]

2
B. Theoretical evidence in favor of Eq. (2) U= VE)O) + 6_ v pﬁf’) (A3)

Purely theoretical evidence pointing to the viability of Eq. H
(2) over Eq.(3) is summarized in Ref26]. The latter paper and rotate at an angular velocity
also presents formal arguments based upon the contribution
of Burnett's[2,28 thermal stress terms to the viscous stress Q= }(V X v(0) (A4)
tensorT Eqg. (1), over and above the classicgl-based New- 2 o
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In the past, Faxen’'s laws, Eq#1) and (A2), have only
been applied to the usual case, where/,,. However, from

PHYSICAL REVIEW E70, 061201(2004

shape and orientation. This follows from the fact that the
generalization of Eq(Al) for an arbitrarily shapednonro-

a purely mathematical view, Faxen’s laws may equally welltating) particle [19,34 is F=M1.[(v9-U)+0O(a/L)],,

be applied any velocity field satisfying Eqs.(9) and (8),
provided thatv also satisfies a vanishing vector velocity
boundary conditionv=0 on dVs. As discussed irj33], the
latter condition is applicable to the choiee=v, for situa-
tions in which the sphere is nonconductitand, generally,
only in that casg The undisturbed volume velocity field]O>
existing in the absence of the sphere is given by #&d) as
v\9=-aBVTo=const, in which, by definitiony T®= VT,
=const (O x). This velocity field obviously satisfies the
quasi-incompressibility conditior{11), namely,V-v(O):O,
sincev!”=0 and V2T(?=0. Moreover, we see tha{’ also
satisfies the v,-based creeping flow equation®p©®
=uV2'9, in which Vp@=0. Thus, Eq.(A3) becomes
U=-aBVT,. (A5)
Additionally, Eq. (A4) becomes(2=0 [34]. In the noncon-
ducting particle limit, Eq(A5) accords with the more gen-

eral formula[15] U=-aB[1+(k/2k)] 1V T,, applicable to
the conducting sphere cade/k+ 0), and derived by solving

whereM is the particle’qtorque-fre¢ mobility dyadic,ais a
characteristic particle size, ardis a characteristic length
appearing in the dimensionless normalizatfoh= LV of the
gradient operator appearing explicitly in the undisturbed
nonuniform flowv® [so that theO(a/L) term represents a
wall effecfl. Accordingly, the velocity of such a force-free
body isU:vf)O)+O(a/ L). With use of Eq.14), one thus re-
covers Eq(A5). Thus, remarkably, as is more formally dem-
onstrated in Ref{15], irrespective of size, shape, and orien-
tation relative to the undisturbed temperature grad¥eng,
nonconducting particles will all move with the same velocity
U. Accordingly, provided that one interprets fluid motion
physically as being the fluid’s volume velocity rather than its
mass velocity, Eq(A5), expressed more generally &b
=\?)o=(v\?),+0(a/L), simply states that any passive
(i.e., nonconducting no-slip, thermophoretically animated
particle is simply entrained in the flowing fluid. Alterna-
tively, with use of Eq(12), this may be written more gener-
ally as

the complete, coupled boundary-value problem for that case.

2. Nonspherical particles
Equation (A5) is applicable not only to spheres, but

U=v{?=v?-apvTO+0(@alL), (AB)

a result which holds in all situations wherein a temperature

equally to any nonconducting particles, irrespective of theigradient exists in the fluid.
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the conditionn-v,=0 on dV is automatically satisfied in cir-
cumstances where the sphere is nonconducting. Accordingly,
in such situations we have that=0 on ¢V, thereby allowing
Faxen’s laws to be applied to the nonconducting sphere case,
V=V,

validity upon the vanishingy=0 on dV, of the complete vec- [34] That the particle does not rotate is a consequence of the fact

tor velocity fieldv at the sphere surface. Given ), this
obviously requiresinter alia, thatn-(v-v,)=0 on dVs. This
condition is trivially satisfied in the case of E@). In the case
of Eq. (2), wherev=v,, we see from Eqs(12) and(13) that
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that from Eq.(12) the undisturbed velocity field Eq14) is
vorticity-free throughout the fluidy X v(n?)= V X vf}o)=0, ow-

ing to the fact that the curl of the gradient of any scalar field,
here the temperature field, is identically zero.



